Summer Internship Report at PlasmIT Vector IT (April 22nd to June 21st,2024)

> A Report By Dr. Anshuma Mahalle

PGDM

(Hospital and Health Management) 2023-2025

MENTOR

Dr. Anandhi Ramachandra

International Institute of Health Management Research, New Delhi

ACKNOWLEDGEMENT

I received a lot of advice and assistance from these folks, whose help was crucial to the project's success. I could not have accomplished anything without this advice and assistance.

They assisted me in this undertaking, for which I am grateful. I would like to take this opportunity to thanks to Mr. AWADHESH KUMR (Director of organization) Surry Hills, New South Wales <u>https://www.plasmitvector.com</u> for their genuine interest in the project and willingness to share their opinions despite their extremely busy schedules. I consider it a privilege to have worked in, PlasmIT Vector IT under their skilled leadership. He deserves my sincere thanks and obligation for their outstanding support and assistance during the entire operation. My sincere appreciation is extended to

Dr ANANDHI RAMACHANDRAN (PROFFESOR)Furthermore, I would like to thank IIHMR for giving me the opportunity. I owe a debt of appreciation to Ms. ANJU SEHRAWAT (PLACEMENT) for allowing me to work on this research and for providing me with all the guidance and support necessary to complete the project on "WORKFLOW OF SMART ICU APP(PiMed) ." I owe her a debt of appreciation for her helpful advice and guidance. First and foremost, this big task cannot be completed without my friends and loved one.

CONTENT

SL.NO	TITLE	PAGE NO
1	Abbreviation	4
2	About PlasmIT	5-6
3	Introduction of study	7-8
4	Review of literature	10-11
5	Research methodology	12-15
6	Data analysis	15-17
7	Results	18-19
8	Conclusion	20-22
9	Reference	23-26
10	Annexure	27

ABBREVIATIONS

ICU	Intensive care unit
AI	Artificial Intelligence
ML	Machine Learning
SPO2	Peripheral capillary Oxygen Saturation
ECG	Electrocardiograph
ECU	Emergency Care Unit
MIVA	Medical Information Visualization Assistant
PC	Personal Computer
IOT	Internet Of Things

About PlasmIT

PlasmIT is a team of seasoned digital technology experts and healthcare professionals who, drawing from their personal and professional experiences, identified significant opportunities to enhance the critical care ecosystem. Their goal is to deliver timely, high-quality care and ultimately save lives.

The PlasmIT leadership team has assisted both the Australian and Indian governments in defining future care strategies and roadmaps. They are dedicated to improving the quality of life for care workers and the well-being of patient, their Care Delivery Platform, 'PiMed,' is an AI/ML-enabled next-generation platform that is trusted, connected, immersive, integrated, secure, fault-tolerant, and compliant. Built on blockchain technology, PiMed promises to deliver world-class care at an affordable cost.

PiMed seamlessly integrates with various medical devices connected to patients in ICUs, emergency care, general wards, or at home through our proprietary AI/ML-enabled edge devices and platform.

It intelligently renders care data in real-time, 24/7, allowing care workers to provide timely, collaborative care from anywhere, at any time, using any device. This approach delivers patient-centric care through our 'One Global Care Network.'

VISION & MISSION

Vision: To revolutionize the critical care ecosystem by delivering timely, highquality, and patient-centric care, ultimately saving lives and enhancing the quality of life for care workers and patients globally.

Mission: To leverage advanced digital technologies, including AI, ML, and blockchain, to create a trusted, connected, and immersive care delivery platform. By integrating with medical devices and rendering intelligent real-time data, we aim to support care workers in providing collaborative, point-in-time care from anywhere, ensuring affordable and world-class healthcare.

Key Features:

- 1. Integrated Health Dashboard with Case Prioritization
- 2. Seamless Medical device data 24x7 on Mobile Device
- 3. Round the clock Patient care and real-time health vitals monitoring
- 4. AI/ML enabled Abnormality Alerts and Insights
- 5. Real-time Inter disciplinary collaboration
- 6. Integrated and Guided Clinical Pathways
- 7. Stakeholder centric One touch care experience and insights
- 8. Secured and Compliant Platform
- 9. Seamless transition across various care settings
- 10. Optimized care process and efficient resource utilization
- 11. Health wallet at Fingertips

INTRODUCTION

The PlasmIT team comprises experienced technology experts and healthcare professionals dedicated to addressing critical gaps in the existing critical care ecosystem through innovative solutions. The mission of PlasmIT is to revolutionize the way critical care is delivered, ultimately saving lives and enhancing the quality of care for both patients and healthcare providers.

Background on ICU Challenges: Intensive Care Units (ICUs) present a unique set of challenges that necessitate constant, intensive monitoring and care for critically ill patients. The high patient acuity in ICUs requires healthcare providers to manage numerous devices, medications, and interventions simultaneously. This complexity of monitoring and interventions underscores the need for real-time data, where instant access to accurate patient information is crucial for timely and effective decision-making.

Emergence of Smart ICU Solutions: In recent years, there has been a significant push towards technological integration in healthcare. The adoption of digital tools and applications aims to improve patient care by enhancing data accuracy, streamlining processes, and reducing manual tasks. PlasmIT's Care Delivery Platform, PiMed, stands at the forefront of this technological revolution. PiMed is an AI/ML-enabled next-generation platform designed to deliver trusted, connected, immersive, integrated, secure, fault-tolerant, and compliant care underpinned by blockchain technology. This platform holds the promise of delivering world-class care affordably, ensuring that even the most remote locations can benefit from advanced healthcare solutions.

Role of PiMed in ICU Efficiency: PiMed plays a crucial role in enhancing ICU efficiency. By integrating seamlessly with various medical devices connected to patients in ICUs, emergency care units, general wards, or even at home, PiMed leverages proprietary AI/ML-enabled edge devices and platforms to render care data in an intelligent manner. This real-time data access, available 24/7, enables care workers to provide point-in-time care collaboratively from anywhere, using any device. The result is improved patient outcomes through a streamlined, patient-centric approach.

Challenges Faced in ICUs: Despite advancements in technology, ICUs still face significant challenges. A considerable amount of time is lost due to manual data entry, information retrieval, and coordination among staff. Inefficient workflows, characterized by redundant steps and a lack of streamlined processes, can delay critical interventions. These challenges highlight the

pressing need for innovative solutions that can enhance efficiency and accuracy in ICUs.

Need for the Project: The need for the PiMed project is driven by the urgent requirement to address the inefficiencies and challenges in the ICU environment. By providing a platform that integrates multiple medical devices, offers real-time data access, and reduces manual tasks, PiMed aims to significantly improve the efficiency and quality of critical care. This project is not just about leveraging advanced technologies; it is about transforming the critical care landscape to ensure that patients receive the best possible care, healthcare providers can work more efficiently, and ultimately, lives are saved. In conclusion, PlasmIT's PiMed is poised to be a game-changer in the critical care ecosystem, addressing the pressing needs of ICUs through cutting-edge technology and innovative solutions.

Objectives

The study aims to:

- 1. Understand the core features and functionalities of PiMed.
- 2. Examine how PiMed integrates with existing ICU workflows.
- **3.** Identify the challenges faced in ICUs and how PiMed addresses them.
- 4. Discuss the monetary implications of implementing smart ICU solutions.

The primary objective of this study is to comprehensively map the workflow of the PiMed smart ICU application and evaluate its integration into ICU operations. The study aims to achieve the following specific objectives:

1. Understand the Core Features and Functionalities of PiMed

This objective focuses on a detailed exploration of PiMed's capabilities. It involves identifying and documenting the key features of the PiMed platform, including its AI/ML-enabled functionalities, blockchain integration, real-time data rendering, and secure, fault-tolerant design. By thoroughly understanding these features, the study aims to highlight how PiMed enhances critical care delivery. This includes an examination of its user interface, ease of use, and the specific technological advancements that set it apart from traditional ICU management systems.

2. Examine How PiMed Integrates with Existing ICU Workflows

Integration is a critical factor for the successful implementation of any new technology in healthcare settings. This objective seeks to evaluate how PiMed integrates with the existing workflows in ICUs. The study will map out current

ICU workflows, identifying points where PiMed can be seamlessly incorporated. This includes assessing the interoperability of PiMed with existing medical devices, electronic health records (EHRs), and other hospital information systems. The aim is to determine the extent to which PiMed can enhance workflow efficiency, reduce manual tasks, and facilitate better coordination among healthcare providers.

3. Identify the Challenges Faced in ICUs and How PiMed Addresses Them

ICUs are faced with numerous challenges, such as high patient acuity, complex monitoring requirements, and the need for real-time data. This objective aims to identify these challenges in detail and assess how PiMed addresses them. The study will investigate issues such as time loss due to manual data entry, inefficiencies in information retrieval, and coordination difficulties among staff. By examining how PiMed's real-time data rendering, AI/ML capabilities, and integrated platform address these issues, the study will provide a clear picture of the improvements PiMed can bring to ICU operations.

4. Discuss the Monetary Implications of Implementing Smart ICU Solutions

Implementing new technology in healthcare settings has significant financial implications. This objective focuses on evaluating the cost-effectiveness of integrating PiMed into ICUs. The study will analyze the initial costs of implementation, including hardware, software, and training expenses. It will also consider the potential long-term financial benefits, such as reduced labor costs, improved patient outcomes leading to shorter ICU stays, and enhanced operational efficiency. By discussing these monetary implications, the study aims to provide a comprehensive cost-benefit analysis to justify the investment in smart ICU solutions like PiMed.

In conclusion, this study aims to provide a thorough understanding of the PiMed smart ICU application, its integration into ICU workflows, its effectiveness in addressing ICU challenges, and the financial implications of its implementation. Through these objectives, the study will offer valuable insights into how PiMed can revolutionize critical care delivery and enhance the overall efficiency and effectiveness of ICU operations.

REVIEW OF LITERATURE

- 1) Integration of IoT and Fog Computing in Healthcare Based the Smart Intensive Units: The proposed IoT-based ICU patient monitoring system aims to optimize the ICU monitoring process, thereby minimizing delayed detection and reducing the workload of ICU doctors and caregivers. This system continuously monitors critical patients by measuring various body parameters, including temperature, SpO2, heartbeat, blood pressure, ECG, glucose, and more in real-time. The collected data is processed at fog nodes to reduce latency and subsequently sent to the cloud for storage. In cases where any parameters exceed critical limits, the system promptly notifies doctors and the Emergency Care Unit (ECU), allowing for immediate intervention. Furthermore, doctors can remotely monitor patients' conditions through the cloud, enhancing response times and improving patient care efficiency. This innovative approach not only streamlines ICU operations but also significantly enhances the quality and effectiveness of patient monitoring in critical care settings.
- 2) A Tablet PC based System for Ubiquitous Patient Monitoring and Smart Alert Generation in an Intensive Care Unit: In the field of critical care, efficient monitoring and timely alert generation are paramount. Conventional ICU systems often fall short in providing the necessary real-time monitoring and smart alert mechanisms, leading to delays in critical interventions. This gap can be addressed through the implementation of a Tablet PC-based system focused on ICU workflows. Such systems facilitate seamless clinical data entry, patient monitoring, and meaningful alert generation, thereby enhancing patient care. By interfacing bedside monitors with a central server, a client-server architecture can ensure that data flows smoothly to the entire clinical team, enabling immediate access to reliable patient information. This system automates high-volume device data, lab results, and clinical documentation, thereby improving workflow efficiency. Furthermore, the proposed architecture supports remote monitoring, allowing physicians to stay informed about patient conditions regardless of their location. The system employs open-source software and hardware, with PostGreSQL for database management and JBOSS for application serving, integrated through frameworks like Hibernate and Spring. The use of tablet PCs enhances data entry flexibility and accuracy, supporting various formats such as voice recording, image capture, and file uploads. Additionally,

dynamic alert generation based on a comprehensive analysis of multiple vital signals and their interactions, as opposed to static threshold-based alerts, ensures timely and context-aware notifications. This integrated approach not only improves patient monitoring but also streamlines clinical workflows, ultimately contributing to better patient outcomes and more efficient healthcare delivery.

3) Improving Patient Safety: Integrating Data Visualization and **Communication Into Icu Workflow to Reduce Cognitive Load:** The development of bedside information-visualization devices and clinical decision-support systems has significantly enhanced the ability of ICU clinicians to diagnose patients by providing tools that display and intelligently filter data. Despite these advancements, there remains a gap in research addressing the need for context-sensitive visualization tools that can alleviate cognitive strain during decision-making processes. To address this gap, the Medical Information Visualization Assistant (MIVA) was developed. MIVA is designed to organize patient longitudinal data contextually, employing visual-enhancing tools to facilitate easy, rapid, and accurate analysis and interpretation of real-time patient data. This EMR visualization dashboard aims to reduce cognitive load and diagnostic errors. The ongoing design phase includes communication tools to support ICU team collaboration. Two studies of MIVA indicate its potential effectiveness: quantitative findings demonstrate a significant improvement in speed and accuracy compared to paper medical charts, while qualitative outcomes suggest that MIVA may reduce cognitive load and enrich the ICU's social and informational workflow.

Methodology

Literature Review

Scope

The literature review focuses on examining existing academic journals, industry reports, and previous studies related to smart ICU solutions, workflow optimization, and healthcare technology. This comprehensive review aims to provide insights into the implementation and impact of smart ICU applications, contextualizing primary data and establishing a solid foundation for the study.

Sources

To gather relevant articles and reports, the review utilized several databases and repositories, including:

Academic Databases: PubMed, Google Scholar, and IEEE Xplore.

Industry Reports: Reports from healthcare technology companies, market analysis firms, and government health agencies.

Additional Sources: YouTube videos and institutional repositories.

Keywords

Specific keywords were employed to ensure a focused search, including:

"smart ICU app"

"workflow efficiency"

"healthcare technology"

Data Collection

Identify Relevant Studies

The review selected studies that directly relate to smart ICU solutions and their impact on workflow and patient care. The selection process involved identifying studies with clear methodologies, robust data analyses, and significant findings.

Data Analysis

Thematic Analysis

Thematic analysis was conducted to identify common themes and patterns across the selected studies. This approach highlighted improvements in workflow efficiency and patient outcomes as recurring themes.

Comparative Analysis

Comparative analysis was employed to compare findings from different studies. This step aimed to identify consistent results and highlight any discrepancies, providing a more nuanced understanding of the data.

Sources and Tools

Academic Databases

PubMed: A key resource for medical and healthcare-related research.

Google Scholar: A broad academic database covering various disciplines.

IEEE Xplore: A database specializing in technology and engineering research.

Industry Reports

Reports from healthcare technology companies, providing industry-specific insights.

Market analysis firms' reports, offering market trends and analysis.

Government health agencies' reports, ensuring credible and authoritative data.

Additional Sources: YouTube videos for practical demonstrations and additional perspectives.

Selection of Airstrip app and Epic Rover for comparison

The adoption of Airtrip and Epic Rover varies significantly by region, reflecting the diverse healthcare infrastructures and electronic health record (EHR) systems utilized around the world. Epic Rover, developed by Epic Systems, dominates the EHR market in the United States, where it is extensively used by major hospital systems and healthcare networks. This concentration of usage makes the U.S. the largest market for Epic Rover, which is particularly favored in facilities already using Epic EHR. In Canada, Epic Rover has gained traction as well, especially among hospitals and health systems that have integrated the Epic platform into their operations. Similarly, in parts of Europe such as the Netherlands, Denmark, and the United Kingdom, Epic Rover is being adopted in areas with significant Epic EHR implementations, thus expanding its geographic footprint. On the other hand, Airtrip is a solution primarily tailored to the Japanese healthcare market, where it is specifically designed to meet the needs of local providers. Airtrip emphasizes mobility and real-time communication within hospital environments, making it a crucial tool for enhancing operational efficiency in Japanese healthcare settings. This trend of adoption is also being noticed in Southeast Asia, where there is a growing interest in mobile solutions for improved intensive care unit (ICU) management. Hospitals in this region are increasingly seeking to implement technologies like Airtrip to facilitate better patient monitoring and accelerate response times in critical care situations.

While the individual usage of Airtrip and Epic Rover is marked by distinct regional preferences, the combined usage of both platforms remains relatively limited, primarily because they address different needs within the healthcare landscape. However, large, internationally connected healthcare organizations operating in both the U.S. and Japan may opt to integrate both systems to enhance efficiency and data sharing across borders. For instance, some U.S. hospital systems that have established partnerships with Japanese institutions might utilize both platforms, allowing for seamless operations and the integration of healthcare data across various locations. Additionally, international hospital networks that maintain facilities in both regions might leverage Epic Rover in their American branches while deploying Airtrip in their facilities in Japan and other Asian countries. This dual-platform strategy helps to ensure that patient care standards are uniformly maintained through consistent data access and communication methodologies.

The integration of both Airtrip and Epic Rover globally could yield significant advantages for managing ICU workflows and improving overall patient care. Key benefits of selecting both platforms include leveraging the strengths of each system. Airtrip excels in providing mobility and real-time collaboration, enabling healthcare professionals to access patient data and communicate effectively from various locations within the hospital. Conversely, Epic Rover integrates seamlessly with existing Epic EHR systems, enhancing bedside documentation by capturing patient data accurately and without delay, thereby reducing potential errors.

Incorporating both systems can also enhance interoperability by facilitating a smooth data flow between mobile devices and bedside documentation tools. Airtrip's real-time alerts and notifications complement Epic Rover's comprehensive patient data access, fostering a holistic approach to patient management. Furthermore, as both Airtrip and Epic Rover are scalable, they can

be adapted to fit diverse healthcare environments, enabling organizations to tailor their strategies according to their specific resource levels.

Utilizing both systems simultaneously not only enhances workflow efficiency streamlining communication and ensuring prompt responses during emergencies—but it also introduces redundancy and reliability. If one system were to face technical difficulties, the other could maintain critical operations, thereby ensuring the continuity of patient care. Security and compliance remain paramount in healthcare, and the robust protective features of both Airtrip and Epic Rover work together to safeguard patient data across varied platforms. Moreover, offering both systems accommodates different preferences among healthcare professionals, allowing staff to select tools that best suit their workflows and roles. With ongoing innovations from both platforms, healthcare organizations can future-proof their operations by accessing new features and updates that address the evolving landscape of ICU management.

Lastly, the global reach and support networks of both Airtrip and Epic Rover enhance the viability of their combined use. By establishing a comprehensive ICU management system that harnesses the unique capabilities of each application, healthcare organizations can improve patient outcomes significantly while maintaining an adaptable and responsive operational framework. In summary, while distinct regional adoption patterns exist for Airtrip and Epic Rover, their strategic integration could offer a powerful solution for healthcare systems striving for excellence in patient care and operational efficiency.

Data Analysis

COMPARISON BETWEEN PiMED, AirStrip One & Epic Rover APPLICATIONS

	PiMed	APP	AirStrip ONE	Epic Rover
INTRODUCTION	•	PiMed is an integrated care delivery platform that provides patient real-time 24×7 information in intelligent manner, from multiple sources to enable care-workers to deliver point-in-time care in a collaborative manner.Platform enables hospital care worker to connect with patients 24×7 from anywhere with any device ; finally deliver values leveraging One Global care network.Pimed only Made for Critical care /Intensive care Uint of hospitals and it mainly for time management and time lag in emergency cases.	 AirStrip ONE is a comprehensive mobile healthcare application that provides clinicians with real-time access to patient data from various sources, including EHRs, monitoring devices, and medical imaging systems. It enhances decision-making by delivering critical patient information anytime and anywhere, facilitating timely interventions. The app's secure, cloud-based platform ensures data privacy and compliance with healthcare regulations. AirStrip ONE supports improved patient outcomes through enhanced clinical collaboration and efficient care delivery. 	 Epic Rover is a mobile application designed to streamline clinical workflows by allowing healthcare professionals to access and update patient information directly from their smartphones or tablets. It enhances efficiency by providing real-time access to medical records, medication administration, and clinical documentation. The app integrates seamlessly with the Epic electronic health record (EHR) system, ensuring data accuracy and consistency. With its userfriendly interface and secure access, Epic Rover supports improved patient care and workflow optimization.

	 Intelligent Integrated Health Dashboard 	Easy Access:Native mobile application available	BCMA (bar-coded medication
	Medical device data 24x7 on mobile device	on both iOS and Android.	administration) VS and other
F	> Real time Health Vitals	Eliminates the need for clunky VPN sign-on alternatives.	simple flowsheet documentation
E A T U	 Abnormality Alerts and Insights Co-ordination & Collaboration 	 Access Multiple Sites: Single login to access all hospitals in the system. Easy site selection and switching to 	 Lab collection Transport notification EVS users can take
R E S	 Integrated Care Administration Diagnostics Assessments 	focus on patient care. ➤ View Patient Data:	action on assigned requests
5	& Reports Compliant and 	 View all patients on monitors. Search for patients and group by unit or bed. 	 Work list tasks Notifications about new Orders
	Regulatory Adherence	Filter to see patients for a specific unit.	Blood Administration
		Near-real time waveforms, physiological data, and alarmed events available for each patient.	Patient and clinical image capture including Wound documentation
		 See Near Real-Time Waveforms: View near real-time and historical waveforms. 	 LDA (lines, drains, airways, wounds) documentation with
		Scroll back in time or choose a specific date and time to see historical waveforms.	an avatar
		Access Alarmed Events:	
		Organized structure for viewing alarmed events.	
		Filter alarms by type and severity.	
		View most recent events at the top.	
		Select a date to jump to events for that date.	
		Digital Rhythm Strips:	
		 Eliminates the need for printing, cutting, copying, labeling, and scanning paper strips. 	
		Measure, review, acknowledge, and approve cardiac rhythm strips.	

	Upload digital rhythm strips to the EHR from mobile devices and the web.	
	 Secure Communication: Send messages to other clinical team members. 	
	 Share links to live and historical waveforms for review. 	

GAPS in ICU app/software Implementation in research paper

Integration of IoT and Fog Computing in Healthcare Based on Smart Intensive Units:

Interoperability Issues: While the system aims to optimize ICU monitoring, the paper may not address how the IoT devices and fog nodes integrate with existing hospital IT infrastructure and other medical devices.

Data Privacy and Security: The paper likely lacks a detailed discussion on the measures for ensuring data privacy and security when sensitive patient data is processed and stored.

Scalability: There is potentially limited information on how the system scales with the increasing number of patients and the associated data load.

User Training and Adoption: The study might not cover the challenges related to training healthcare staff to use the new system and their adoption rates.

A Tablet PC-Based System for Ubiquitous Patient Monitoring and Smart Alert Generation in an Intensive Care Unit:

Integration with EHR Systems: The research may not fully explore how the tablet PC system integrates with existing Electronic Health Records (EHR) systems for seamless data sharing and record-keeping.

Usability and User Experience: There might be a lack of focus on the usability and user experience of the tablet PCs, especially for less tech-savvy staff members.

Cost Analysis: The paper could be missing a comprehensive cost-benefit analysis, which is crucial for hospitals considering the implementation of such technology.

Long-Term Effectiveness: The study may not provide long-term data on the effectiveness of the system in improving patient outcomes and workflow efficiency over extended periods.

Improving Patient Safety: Integrating Data Visualization and Communication into ICU Workflow to Reduce Cognitive Load:

Real-World Implementation: The research might not discuss the practical challenges and barriers to implementing the Medical Information Visualization Assistant (MIVA) in real-world ICU settings.

Interdisciplinary Collaboration: There could be a gap in exploring how the tool facilitates collaboration among different types of healthcare providers (e.g., doctors, nurses, specialists).

Customization and Flexibility: The study may not address the customization of MIVA for different types of ICUs and patient conditions.

Impact on Patient Outcomes: The paper might lack detailed evidence on how MIVA directly impacts patient outcomes beyond reducing cognitive load for clinicians.

Conclusion

The integration of IoT, fog computing, tablet PC systems, and advanced data visualization tools in ICU settings significantly enhances continuous and realtime patient monitoring, facilitating immediate detection of critical changes and enabling timely interventions. These technologies streamline ICU workflows, reduce cognitive load on healthcare providers, and improve the accuracy of diagnostic processes. Remote monitoring capabilities further enhance flexibility and responsiveness in patient care. However, successful implementation requires addressing challenges such as interoperability with existing systems, data security, usability, staff training, cost, and scalability. Ensuring seamless integration, robust security measures, user-friendly interfaces, comprehensive training, and cost-effective scalability are crucial for the widespread adoption and effectiveness of these innovations in critical care environments.

All three studies emphasize the importance of continuous and real-time monitoring of critical patients. The IoT-based ICU patient monitoring system and the tablet PC-based monitoring system both facilitate immediate detection of critical changes in patient conditions. By employing these systems, healthcare providers can receive timely alerts and notifications, which are crucial for prompt interventions and potentially life-saving actions. The introduction of these technologies aims to streamline ICU workflows, thereby reducing the cognitive load on healthcare providers. For instance, the tablet PC system automates the entry and management of clinical data, lab results, and device data, which improves the efficiency of clinical workflows. Similarly, the Medical Information Visualization Assistant (MIVA) organizes and visually enhances patient data, making it easier for clinicians to analyze and interpret information quickly and accurately. Remote monitoring capabilities are a significant advantage highlighted in the studies. Both the IoT-based system and the tablet PC system allow doctors to monitor patient conditions remotely, enhancing the flexibility and responsiveness of ICU care. This ability to access patient data from any location ensures that physicians can stay informed and make timely decisions, irrespective of their physical presence in the ICU. The MIVA system specifically addresses the issue of cognitive load by providing context-sensitive visualization tools that help reduce diagnostic errors. By presenting data in a more intuitive and organized manner, MIVA enables clinicians to focus on critical information without being overwhelmed by the sheer volume of data typically encountered in ICUs. While the technologies

discussed offer significant benefits, there are common challenges that need to be addressed. Interoperability with existing hospital IT infrastructure and other medical devices remains a crucial concern. Ensuring seamless integration is essential for the widespread adoption and effectiveness of these systems. Another critical aspect is the protection of patient data. The IoT and cloud-based systems must implement robust security measures to safeguard sensitive health information from unauthorized access and breaches. The success of these systems also hinges on their usability and the adequate training of healthcare staff. Ensuring that the systems are user-friendly and that staff members are well-trained can significantly impact the adoption and effectiveness of these technologies. Considerations of cost and scalability are vital for the practical implementation of these systems in diverse healthcare settings. A thorough costbenefit analysis and strategies for scaling the technology to handle increasing patient loads are essential for long-term sustainability."

References

Article Google Scholar

Bierig SM, Jones A (2009) Accuracy and cost comparison of ultrasound versus alternative imaging modalities, including CT, MR, PET, and angiography.J Diagn Med Sonogr 25:138–144

Bioeffects Committee of the American Institute of Ultrasound in Medicine
 (2008) American Institute of Ultrasound in Medicine consensus report on
 potential bioeffects of diagnostic ultrasound: executive summary. J
 Ultrasound Med 27:503–515

CA Cancer J Clin, 60 (2010), pp. 139-165

Digital pathology in the clinical workflow. A Time and Motion Study. [abstract], Pathology Visions, San Diego, CA (2010)

file:///C:/Users/Anshuma/Downloads/978-3-642-03658-3_73.pdf

Godycki-Ćwirko M, Koziarska-Rościszewska M, Kosiek K. Medical errors – an attempt to evaluate the semantics and taxonomy of the concept and statistical data. Orzecznictwo medyczne 2009; 6: 131–134.

Google Scholar

Google Scholar

Hayt, D., Alexander, S., Drakakis, J. et al. Filmless in 60 Days: The Impact of Picture Archiving and Communications Systems Within a Large Urban Hospital . J Digit Imaging 14, 62–71 (2001). https://doi.org/10.1007/s10278-001-0004-1

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=715e530262

5673148e8ee10f09220d3dfba9a7d5

https://ieeexplore.ieee.org/abstract/document/6686385

https://ieeexplore.ieee.org/abstract/document/8306918

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9786791

https://journals.sagepub.com/doi/abs/10.1177/2327857915041013

https://journals.sagepub.com/doi/full/10.1177/1178638818820299

https://link.springer.com/article/10.1007/s10278-001-0004-1

https://link.springer.com/article/10.1186/s12911-017-0520-7

https://psnet.ahrq.gov/issue/financial-and-human-cost-medical-error-and-how-

massachusetts-can-lead-way-patient-safety

https://pubmed.ncbi.nlm.nih.gov/25910685/

https://pubmed.ncbi.nlm.nih.gov/32120317

https://pubmed.ncbi.nlm.nih.gov/37170597/

https://www.airstrip.com/

https://www.epic.com/epic/post/epic-rover-prevents-med-errors-nationwide/ https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9206410/

https://www.researchgate.net/profile/Roshdy-

Abdelrassoul/publication/325549912_Artificial_intelligence_application_ to_design_smart_portable_intensive_care_unit/links/5bace7d692851ca9e d2a2d98/Artificial-intelligence-application-to-design-smart-portableintensive-care-unit.pdf

increase in charges.

J Patho Inform, 2 (2011), L. Pan Tanowitz, PN Valenstein, AJ Evans, KKaplan, JD Pfeifer, DC Wilbur, et al.Quality in cancer diagnosis Review of the current state of whole slide imaging in pathology SS Raab, DM Grzybicki

Websites:

https://www.sciencedirect.com/science/article/abs/pii/S088394411930784

World Alliance of Patient Safety (WHO). Draft guidelines for adverse event

reporting and learning systems,

www.who.int/patientsafety/events/05/Reporting_Guidelines.pdf

(2005, accessed 30 December 2013)

FEEDBACK FORM

(Organization Supervisor)

Name of the Student: Dr. Anshuma Mahalle

Summer Internship Institution: Plasm IT Healthcare IT Vector

Area of Summer Internship: PiMed App & Healthcare IT project

Attendance: Regular

Objectives met: Yes, all assigned objectives were met.

Deliverables: Anshuma consistently exhibited strong analytical and problem-solving skills during their time with us. Their ability to conduct detailed workflow mapping and effectively analyse the PiMed smart ICU app's features made a significant contribution to our project outcomes. The exercise was performed efficiently within the given timeframe.

Strengths: Anshuma proactively seeks feedback and is always eager to learn more. She effectively led all tasks assigned to the group and actively managed group activities. She has good communication skills.

Suggestions for Improveme : Students should work on report writing skills.

Signature of the Officer-in-Charge (Internship)

Date: 10-7-2024 Place: Australia

A

Awadhesh Kumar

10

Founder & CEO

COMPLETION OF SUMMER TRAINING FROM PLASMIT HEALTHCARE VECTOR IT

The certificate is awarded to

Name : Dr. Anshuma Mahalle In recognition of having successfully completed his/her

Internship in the department of

Title Pimed application feature and ICU workflow mapping

and has successfully completed

her Project onTitle of the

Project

Date 1st May to 1st July

Organisation PlasmIT Healthcare IT Vector

He/She comes across as a committed, sincere & diligent person who has astrong drive & zeal for learning.

We wish him/her all the best for future endeavors.

Organization Supervisor

Awadhesh Kumar Founder & CEO

Date:10-7-2024 Place: Australia Head-HR/Department

Head